COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

B lymphocytes participate in cross-presentation of antigen following gene gun vaccination.

Although endocytosed proteins are commonly presented via the class II MHC pathway to stimulate CD4(+) T cells, professional APCs can also cross-present Ags, whereby these exogenous peptides can be complexed with class I MHC for cross-priming of CD8(+) T cells. Whereas the ability of dendritic cells (DCs) to cross-present Ags is well documented, it is not known whether other APCs may also play a role, or what is the relative contribution of cross-priming to the induction of acquired immunity after DNA immunization. In this study, we compared immune responses generated after gene gun vaccination of mice with DNA vaccine plasmids driven by the conventional CMV promoter, the DC-specific CD11c promoter, or the keratinocyte-specific K14 promoter. The CD11c promoter achieved equivalent expression in CD11c(+) DCs in draining lymph nodes over time, as did a conventional CMV-driven plasmid. However, immunization with DC-restricted DNA vaccines failed to generate protective humoral or cellular immunity to model Ags influenza hemagglutinin and OVA, despite the ability of CD11c(+) cells isolated from lymph nodes to stimulate proliferation of Ag-specific T cells directly ex vivo. In contrast, keratinocyte-restricted vaccines elicited comparable T and B cell activity as conventional CMV promoter-driven vaccines, indicating that cross-priming plays a major role in the generation of immune responses after gene gun immunization. Furthermore, parallel studies in B cell-deficient mu-MT mice demonstrated that B lymphocytes, in addition to DCs, mediate cross-priming of Ag-specific T cells. Collectively, these data indicate that broad expression of the immunogen is required for optimal induction of protective acquired immunity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app