Add like
Add dislike
Add to saved papers

Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-1alpha/CXCR4-mediated migration of epitheloid carcinoma cells.

Emerging evidence shows that the stromal cell-derived factor 1 (SDF-1)/CXCR4 interaction regulates multiple cell signaling pathways and a variety of cellular functions such as cell migration, proliferation, and survival. There is little information linking the cellular functions and individual signaling pathways mediated by SDF-1 and CXCR4 in human cancer cells. In this study, we have shown that human epitheloid carcinoma HeLa cells express functional CXCR4 by reverse transcription-PCR, immunofluorescent staining, and 125I-SDF-1alpha ligand binding analyses. The treatment of HeLa cells with recombinant SDF-1alpha results in time-dependent Akt and extracellular signal-regulated kinase 1/2 (ERK1/2) activations. The SDF-1alpha-induced Akt and ERK1/2 activations are CXCR4 dependent as confirmed by their total inhibition by T134, a CXCR4-specific peptide antagonist. Cell signaling analysis with pathway-specific inhibitors reveals that SDF-1alpha-induced Akt activation is not required for ERK1/2 activation and vice versa, indicating that activations of Akt and ERK1/2 occur independently. Functional analysis shows that SDF-1alpha induces a CXCR4-dependent migration of HeLa cells. The migration can be totally blocked by phosphoinositide 3-kinase inhibitors, wortmannin or LY294002, whereas mitogen-activated protein/ERK kinase inhibitors, PD98059 and U0126, have no significant effect on SDF-1alpha-induced migration, suggesting that Akt activation, but not ERK1/2 activation, is required for SDF-1alpha-induced migration of epitheloid carcinoma cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app