Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Activation of spinal d1/d5 receptors induces late-phase LTP of C-fiber-evoked field potentials in rat spinal dorsal horn.

Long-term potentiation (LTP) of C-fiber-evoked field potentials in spinal dorsal horn may be relevant to pathological pain. Our previous work has shown that the late phase of the spinal LTP is protein synthesis-dependent. Considerable evidence has accumulated that dopamine D1/D5 receptors are important for late-phase LTP in hippocampus. In this study, the role of D1/D5 receptors in LTP of C-fiber-evoked field potentials in spinal dorsal horn was evaluated in urethan-anesthetized Sprague-Dawley rats. We found the following. 1) Spinal application of SKF 38393, a D1/D5 receptor agonist, induced a slowly developed LTP of C-fiber-evoked field potentials, lasting for >10 h, and the effect was blocked by the D1/D5 antagonist SCH 23390, whereas a D2 receptor agonist (quinpirole) induced depression of C-fiber responses, lasting for 2 h. 2) The potentiation produced by D1/D5 receptor agonist occluded the late phase but not the early phase of the spinal LTP produced by tetanic stimulation. 3) SCH 23390 selectively depressed the late-phase LTP, when applied 40 min before tetanic stimulation. 4) The D1/D5 agonist-induced potentiation is blocked by the protein synthesis inhibitor anisomycin. 5) Activation of protein kinase A by spinal application of 8-Br-cAMP also induced spinal LTP, and the action occluded the potentiation induced by the D1/D5 receptor agonist. These results suggest that the spinal D1/D5 receptors participate in the protein synthesis-dependent late-phase LTP of C-fiber-evoked field potentials in spinal dorsal horn through the cAMP signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app