Add like
Add dislike
Add to saved papers

Photoinduced processes within compact dyads based on triphenylpyridinium-functionalized bipyridyl complexes of ruthenium(II).

As an alternative to conventional charge-separation functional molecular models based on long-range ET within redox cascades, a "compact approach" has been examined. To this end, spacer elements usually inserted between main redox-active units within polyad systems have been removed, allowing extended rigidity but at the expense of enhanced intercomponent electronic communication. The molecular assemblies investigated here are of the P-(theta (1))-A type, where the theta (1) twist angle is related to the degree of conjugation between the photosensitizer (P, of {Ru(bpy)(3)}(2+) type) and the electron-acceptor (A). 4-N- and 4-N-,4'-N-(2,4,6-triphenylpyridinio)-2,2'-bipyridine ligands (A(1)-bpy and A(2)-bpy, respectively) have been synthesized to give complexes with Ru(II), 1-bpy and 2-bpy, respectively. Combined solid-state analysis (X-ray crystallography), solution studies ((1)H NMR, cyclic voltammetry) and computational structural optimization allowed verifying that theta (1) angle approaches 90 degrees within 1-bpy and 2-bpy in solution. Also, anticipated existence of strong intercomponent electronic coupling has been confirmed by investigating electronic absorption properties and electrochemical behavior of the compounds. The capability of 1-bpy and 2-bpy to undergo PET process was evaluated by carrying out their photophysical study (steady state emission and time-resolved spectroscopy at both 293 and 77 K). The conformational dependence of photoinduced processes within P-(theta (1))-A systems has been established by comparing the photophysical properties of 1-bpy (and 2-bpy) with those of an affiliated species reported in the literature, 1-phen. A complementary theoretical analysis (DFT) of the change of spin density distribution within model [1-bpy(theta (1))](-) mono-reduced species as a function of theta (1) has been undertaken and the possibility of conformationally switching emission properties of P was derived.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app