Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Salicylic acid-inducible Arabidopsis CK2-like activity phosphorylates TGA2.

We demonstrate that TGA2, TGA5 and TGA6, and TGA3 to a lesser extent, are phosphorylated by an activity in rabbit reticulocytes. Using deletion and point mutagenesis of TGA2, three amino acid (aa) residues, (11)Ser, (12)Thr and (16)Thr, were found to be critical for efficient phosphorylation by a kinase(s) in rabbit reticulocytes. These three residues also were important for phosphorylation by recombinant human Casein Kinase II (CK2) and by a CK2-like kinase in Arabidopsis leaf extracts. Salicylic acid (SA) treatment enhanced the phosphorylation of recombinant TGA2 in vitro; it also enhanced phosphorylation of a TGA2-GFP fusion protein in vivo. By contrast, in vivo phosphorylation of a TGA2-A-GFP fusion protein, in which the (11)Ser, (12)Thr and (16)Thr residues were mutated to non-phosphorylable alanine, was only poorly if at all stimulated by SA treatment. Mutation of the putative CK2 phosphorylation motif did not affect nuclear localization of TGA2. However, the DNA binding activity of TGA2 was reduced by CK2 treatment, whereas that of TGA2-A was unaffected; TGA2's DNA binding activity after incubation in a rabbit reticulocyte lysate also was substantially lower than that of comparably treated TGA2-A. Taken together, these results suggest that phosphorylation at the putative CK2 phosphorylation site negatively regulates the DNA binding activity of TGA2. Analysis of transgenic Arabidopsis overexpressing TGA2-GFP or TGA2-A-GFP, in the absence of SA treatment, revealed that they accumulated similarly elevated levels of PR-1 gene transcripts. Possible reasons why mutations in the putative CK2 phosphorylation site had little effect on PR-1 induction by TGA2 are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app