JOURNAL ARTICLE

Use of personal-indoor-outdoor sulfur concentrations to estimate the infiltration factor and outdoor exposure factor for individual homes and persons

Lance Wallace, Ron Williams
Environmental Science & Technology 2005 March 15, 39 (6): 1707-14
15819228
A study of personal, indoor, and outdoor exposure to PM2.5 and associated elements has been carried out for 37 residents of the Research Triangle Park area in North Carolina. Participants were selected from persons expected to be at elevated risk from exposure to particles, and included 29 persons with hypertension and 8 cardiac patients with implanted defibrillators. Participants were monitored for 7 consecutive days in each of four seasons. One goal of the study was to estimate the contribution of outdoor PM2.5 to indoor concentrations. This depends on the infiltration factor Finf, the fraction of outdoor PM2.5 remaining airborne after penetrating indoors. After confirming with our measurements the findings of previous studies that sulfur has few indoor sources, we estimated an average Finf for each house based on indoor/outdoor sulfur ratios. These estimates ranged from 0.26 to 0.87, with a median value of 0.55. Since these estimates apply only to particles of size similar to that of sulfur particles (0.06-0.5 microm diameter), and since larger particles (0.5-2.5 microm) have lower penetration rates and higher deposition rates, these estimates are likely to be higher than the true infiltration factors for PM2.5 as a whole. In summer when air conditioners were in use, the sulfur-based infiltration factor was at its lowest (averaging 0.50) for most homes, whereas the average Finf for the other three seasons was 0.62-0.63. Using the daily estimated infiltration factor for each house, we calculated the contribution of outdoor PM2.5 to indoor air concentrations. The indoor-generated contributions to indoor PM2.5 had a wider range (0-33 microg/m3) than the outdoor contributions (5-22 microg/m3). However, outdoor contributions exceeded the indoor-generated contributions in 27 of 36 homes. A second goal of the study was to determine the contribution of outdoor particles to personal exposure. This is determined by the "outdoor exposure factor" Fpex, the fraction of outdoor PM2.5 contributing to personal exposure. As with Finf, we estimated Fpex by the personal/outdoor sulfur ratios. The estimates ranged from 0.33 to 0.77 with a median value of 0.53. Outdoor air particles were less important for personal exposures than for indoor concentrations, with the median outdoor contribution to personal exposure just 49%. We regressed the outdoor contributions to personal exposures on measured outdoor PM2.5 at the central site. The regressions had R2 values ranging from 0.19 to 0.88 (median = 0.73). These values provide an indication of the extent of misclassification error in epidemiological estimates of the effect of outdoor particles on health.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15819228
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"