Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

[Nutritional epigenomics of metabolic syndrome].

The importance of epigenetic alterations has been acknowledged in cancer for about two decades by an increasing number of molecular oncologists who contributed to deciphering the epigenetic codes and machinery and opened the road for a new generation of drugs now in clinical trials. However, the relevance of epigenetics to common diseases such as metabolic syndrome and cardiovascular disease was less conspicuous. This review focuses on converging data supporting the hypothesis that, in addition to "thrifty genotype" inheritance, individuals with metabolic syndrome (MetS)--combining disturbances in glucose and insulin metabolism, excess of predominantly abdominally distributed weight, mild dyslipidemia and hypertension, with the subsequent development of obesity, type 2 diabetes mellitus (T2D) and cardiovascular disease (CVD)--have suffered improper "epigenetic programming" during their fetal/postnatal development due to maternal inadequate nutrition and metabolic disturbances and also during their lifetime. Moreover, as seen for obesity and T2D, MetS tends to appear earlier in childhood, to be more severe from generation to generation and to affect more pregnant women. Thus, in addition to maternal effects, MetS patients may display "transgenerational effects" via the incomplete erasure of epigenetic marks endured by their parents and grandparents. We highlight the susceptibility of epigenetic mechanisms controlling gene expression to environmental influences due to their inherent malleability, emphasizing the participation of transposable elements and the potential role of imprinted genes during critical time windows in epigenetic programming, from the very beginning of development throughout life. Increasing our understanding on epigenetic patterns significance and small molecules (nutrients, drugs) that reverse epigenetic (in)activation should provide us with the means to "unlock" silenced (enhanced) genes, and to "convert" the obsolete human thrifty genotype into a "squandering" phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app