Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Phenotypic differences in genetically identical organisms: the epigenetic perspective.

Human monozygotic twins and other genetically identical organisms are almost always strikingly similar in appearance, yet they are often discordant for important phenotypes including complex diseases. Such variation among organisms with virtually identical chromosomal DNA sequences has largely been attributed to the effects of environment. Environmental factors can have a strong effect on some phenotypes, but evidence from both animal and human experiments suggests that the impact of environment has been overstated and that our views on the causes of phenotypic differences in genetically identical organisms require revision. New theoretical and experimental opportunities arise if epigenetic factors are considered as part of the molecular control of phenotype. Epigenetic mechanisms may explain paradoxical findings in twin and inbred animal studies when phenotypic differences occur in the absence of observable environmental differences and also when environmental differences do not significantly increase the degree of phenotypic variation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app