An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale (n = 100) fMRI study of an auditory oddball task

Kent A Kiehl, Michael C Stevens, Kristin R Laurens, Godfrey Pearlson, Vince D Calhoun, Peter F Liddle
NeuroImage 2005 April 15, 25 (3): 899-915
Recent hemodynamic imaging studies have shown that processing of low probability task-relevant target stimuli (i.e., oddballs) and low probability task-irrelevant novel stimuli elicit widespread activity in diverse, spatially distributed cortical and subcortical systems. The nature of this distributed response supports the model that processing of salient and novel stimuli engages many brain regions regardless of whether said regions were necessary for task performance. However, these latter neuroimaging studies largely employed small sample sizes and fixed-effect analyses, limiting the characterization and inference of the results. The present study addressed these issues by collecting a large sample size (n = 100) and employed random effects statistical models. Analyses were also conducted to determine the inter-subject reliability of the hemodynamic response and the effects of gender and age on target detection and novelty processing. Group data demonstrated highly significant activation in all 34 specified regions of interest for target detection and all 24 specified regions of interest for processing of novel stimuli. Neither age nor gender systematically influenced the results. These data are discussed within the context of a model that proposes that the mammalian brain has evolved to adopt a strategy of engaging distributed neuronal systems when processing salient stimuli despite the low probability that many of these brain regions are required for successful task performance. This process may be termed 'adaptive reflexive processing.' The implications of these results for interpreting functional MRI studies are discussed.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"