JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

Sensory irritation. Relation to indoor air pollution.

All mucosae of the body possess chemical sensitivity provided by the CCS. Airborne chemicals can stimulate the CCS through the ocular, nasal, and respiratory mucosae, evoking different pungent sensations, for example, stinging, irritation, burning, piquancy, prickling, freshness, and tingling. Pungent sensations elicited in the nose differ from odor sensations in various characteristics. They are achieved at considerably higher concentrations than those necessary to elicit odor, but they increase with the concentration of the stimulus in a steeper fashion than odor. Pungent sensations from mixtures of compounds show a higher degree of addition--relative to the pungency of the individual components--than that of odor sensations. Pungency is more resistant to adaptation than odor, and, unlike it, displays considerable temporal integration with continuous stimulation. Measurement of a reflex, transitory apnea produced upon inhalation of pungent chemicals holds promise as an objective indicator of the functional status of the CCS. Results from the measurement of this reflex have agreed quantitatively with sensory data in a number of studies, and have shown higher common chemical sensitivity in nonsmokers (compared to smokers), in females (compared to males), and in young adults (compared to the elderly). Research issues mentioned here include the following: 1. We can rarely validate the symptoms putatively caused by indoor air pollution objectively. Without such means, we will always have the potential problem of overreporting and embellishment. Although one person may seem more sensitive than another, the difference may lie in a greater proclivity to complain. 2. Studies of anosmic persons offer a simple means to understand the functional characteristics of the nasal CCS. Studies of chemical series in such subjects should eventually allow construction of quantitative structure-activity models for human pungency perception. The human data can be compared with relevant animal data when possible. 3. The rules of additivity of pungency in mixtures need explication. Regarding the possible role of VOCs in the creation of irritation, we need to ask whether subthreshold levels add up or even amplify each other to produce noticeable irritation. Do repetitive or continuous exposures to subthreshold concentrations increase sensitivity to those substances, so that they evoke pungency when they otherwise would not? Do the various mucose--ocular, nasal, throat--differ in their sensitivity? 4. Modulation of CCS sensitivity by long-term and short-term inhalation of various agents (for example, environmental tobacco smoke) would seem a suitable topic for further research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app