OPEN IN READ APP
JOURNAL ARTICLE

Anti-inflammatory effect of hydroxyethylpuerarin on focal brain ischemia/reperfusion injury in rats

Hai-Yan Lou, Xiu-Mei Zhang, Xin-Bing Wei, Ru-Xia Wang, Xia Sun
Chinese Journal of Physiology 2004 December 31, 47 (4): 197-201
15803753
The objective of this study is to investigate the anti-inflammatory effect of hydroxyethylpuerarin on focal brain ischemia injury in rats and to explore its mechanisms of action. After 24 h of reperfusion following 2 h of cerebral ischemia, the infiltration of neutrophils was observed by myeloperoxidase (MPO) activity determination, the expression of intercellular adhesion molecule-1 (ICAM-1) was observed by western blot and reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, and the nuclear translocation and DNA binding activity of nuclear factor-kappaB (NF-kappaB) were observed by western blot and electrophoretic mobility shift assay (EMSA). The results showed that hydroxyethylpuerarin could obviously inhibit the MPO activity and ICAM-1 expression following 2 hours of ischemia with 24 hours of reperfusion. The nuclear translocation and DNA binding activity were also decreased by hydroxyethylpuerarin treatment. These results suggested that hydroxyethylpuerarin could inhibit neutrophil-mediated inflammatory response after brain ischemia reperfusion in rats. This effect may be mediated by down-regulation of ICAM-1 and NF-kappaB activity.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
15803753
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"