JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Interface tissue fibroblasts from loose total hip replacement prosthesis produce receptor activator of nuclear factor-kappaB ligand, osteoprotegerin, and cathepsin K.

OBJECTIVE: The highly osteolytic interface tissue between the bone and loosening total hip prosthesis is characterized by low pH, formation of foreign body giant cells, osteoclasts, and production of receptor activator of nuclear factor-kappaB (RANKL) and cathepsin K. We hypothesized that fibroblasts in the interface tissue may form a source for RANKL production.

METHODS: Primary interface tissue fibroblasts, fibrous joint capsule fibroblasts, and trabecular bone osteoblasts were stimulated with tumor necrosis factor-alpha (TNF-alpha), interleukin 1beta (IL-1beta), IL-6, IL-11, or 1alpha,25-(OH)2 vitamin D3. Cellular RANKL and released cathepsin K were detected by Western blotting. RANKL in cell lysates and osteoprotegerin (OPG) in cell culture medium were measured by ELISA. RANKL, OPG, and cathepsin K mRNA were measured with quantitative reverse transcriptase polymerase chain reaction.

RESULTS: Interface tissue fibroblasts were found to produce RANKL. 1alpha,25-(OH)2 vitamin D3 stimulation increased RANKL mRNA expression. TNF-alpha was found to be the most potent OPG inducer in interface tissue fibroblasts. Cathepsin K mRNA production in fibroblasts was upregulated roughly 3-fold (p < 0.01) after 1alpha,25-(OH)2D3 stimulation, and both pro- and active cathepsin K protein was released to fibroblast culture media.

CONCLUSION: Interface tissue fibroblasts are able to produce RANKL, OPG, and cathepsin K and may contribute indirectly and directly to pathologic periprosthetic collagenolysis and bone destruction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app