Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

2-Cyano-3,12-dioxoolean-1,9-dien-28-oic acid and related compounds inhibit growth of colon cancer cells through peroxisome proliferator-activated receptor gamma-dependent and -independent pathways.

2-Cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and the corresponding methyl (CDDO-Me) and imidazole (CDDO-Im) esters induce peroxisome proliferator-activated receptor gamma (PPARgamma)-dependent transactivation in SW-480 colon cancer cells, and these responses were inhibited by small inhibitory RNA for PPARgamma. Moreover, in a mammalian two-hybrid assay using the PPARgamma(2)-VP16 fusion plasmid and GAL4-coactivator/corepressor chimeras and a construct (pGAL4) containing five tandem GAL4 response elements, CDDO, CDDO-Me, and CDDO-IM induce transactivation and PPARgamma interaction with multiple coactivators. A major difference among the three PPARgamma agonists was the higher activity of CDDO-Im to induce PPARgamma interactions with the corepressor SMRT. CDDO, CDDO-Me, and CDDO-Im inhibited SW-480, HCT-116, and HT-29 colon cancer cell proliferation at low concentrations and induced cell death at higher concentrations. Growth inhibition at lower concentrations correlated with induction of the tumor suppressor gene caveolin-1 which is known to inhibit colon cancer cell growth. Induction of caveolin-1 by CDDO, CDDO-Me, and CDDO-Im was inhibited by the PPARgamma antagonist N-(4'-aminopyridyl-2-chloro-5-nitrobenzamide (T007), whereas higher doses induced apoptosis [poly(ADP-ribose) polymerase cleavage], which was not inhibited by T007. These results illustrate that CDDO-, CDDO-Me, and CDDO-Im induce both PPARgamma-dependent and -independent responses in colon cancer cells, and activation of these pathways are separable and concentration-dependent for all three compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app