Exciton migration in rigid-rod conjugated polymers: an improved Förster model

Emmanuelle Hennebicq, Geoffrey Pourtois, Gregory D Scholes, Laura M Herz, David M Russell, Carlos Silva, Sepas Setayesh, Andrew C Grimsdale, Klaus Müllen, Jean-Luc Brédas, David Beljonne
Journal of the American Chemical Society 2005 April 6, 127 (13): 4744-62
The dynamics of interchain and intrachain excitation energy transfer taking place in a polyindenofluorene endcapped with perylene derivatives is explored by means of ultrafast spectroscopy combined with correlated quantum-chemical calculations. The experimental data indicate faster exciton migration in films with respect to solution as a result of the emergence of efficient channels involving hopping between chains in close contact. These findings are supported by theoretical simulations based on an improved Forster model. Within this model, the rates are expressed according to the Fermi golden rule on the basis of (i) electronic couplings that take account of the detailed shape of the excited-state wave functions (through the use of a multicentric monopole expansion) and (ii) spectral overlap factors computed from the simulated acceptor absorption and donor emission spectra with explicit coupling to vibrations (considered within a displaced harmonic oscillator model); inhomogeneity is taken into account by assuming a distribution of chromophores with different conjugation lengths. The calculations predict faster intermolecular energy transfer as a result of larger electronic matrix elements and suggest a two-step mechanism for intrachain energy transfer with exciton hopping along the polymer backbone as the limiting step. Injecting the calculated hopping rates into a set of master equations allows the modeling of the dynamics of exciton transport along the polyindenofluorene chains and yields ensemble-averaged energy-transfer rates in good agreement with experiment.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"