COMPARATIVE STUDY
JOURNAL ARTICLE

Recursive estimation of 3D motion and surface structure from local affine flow parameters

Andrew Calway
IEEE Transactions on Pattern Analysis and Machine Intelligence 2005, 27 (4): 562-74
15794161
A recursive structure from motion algorithm based on optical flow measurements taken from an image sequence is described. It provides estimates of surface normals in addition to 3D motion and depth. The measurements are affine motion parameters which approximate the local flow fields associated with near-planar surface patches in the scene. These are integrated over time to give estimates of the 3D parameters using an extended Kalman filter. This also estimates the camera focal length and, so, the 3D estimates are metric. The use of parametric measurements means that the algorithm is computationally less demanding than previous optical flow approaches and the recursive filter builds in a degree of noise robustness. Results of experiments on synthetic and real image sequences demonstrate that the algorithm performs well.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
15794161
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"