JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Differential gene expression profiling of human umbilical cord blood-derived mesenchymal stem cells by DNA microarray.

Stem Cells 2005 April
Mesenchymal stem cells (MSCs) retain both self-renewal and multilineage differentiation capabilities. Despite wide therapeutic potential, many aspects of human MSCs, particularly the molecular parameters to define the stemness, remain largely unknown. Using high-density oligonucleotide micro-arrays, we obtained the differential gene expression profile between a fraction of mononuclear cells of human umbilical cord blood (UCB) and its MSC subpopulation. Of particular interest was a subset of 47 genes preferentially expressed at 50-fold or higher in MSCs, which could be regarded as a molecular foundation of human MSCs. This subset contains numerous genes encoding collagens, other extracellular matrix or related proteins, cytokines or growth factors, and cytoskeleton-associated proteins but very few genes for membrane and nuclear proteins. In addition, a direct comparison of this microarray-generated transcriptome with the published serial analysis of gene expression data suggests that a molecular context of UCB-derived MSCs is more or less similar to that of bone marrow-derived cells. Altogether, our results will provide a basis for studies on molecular mechanisms controlling core properties of human MSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app