Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties.

Nanoscale Fe0 particles are a promising technology for in situ remediation of trichloroethene (TCE) plumes and TCE-DNAPL source areas, butthe physical and chemical properties controlling their reactivity are not yet understood. Here, the TCE reaction rates, pathways, and efficiency of two nanoscale Fe0 particles are measured in batch reactors: particles synthesized from sodium borohydride reduction of ferrous iron (Fe/B) and commercially available particles (RNIP). Reactivity was determined under iron-limited (high [TCE]) and excess iron (low [TCE]) conditions and with and without added H2. Particle efficiency, defined as the fraction of the Fe0 in the particles that is used to dechlorinate TCE, was determined under iron-limited conditions. Both particles had a core/shell structure and similar specific surface areas (approximately 30 m2/g). Using excess iron, Fe/B transformed TCE into ethane (80%) and C3-C6 coupling products (20%). The measured surface area normalized pseudo-first-order rate constant for Fe/B (1.4 x 10(-)2 L.h(-1).m(-2) is approximately 4-fold higher than for RNIP (3.1 x 10-(3) L.h(-1).m(-2). All the Fe0 in Fe/B was accessible for TCE dechlorination, and 92 +/- 0.7% of the Fe0 was used to reduce TCE. For Fe/B, H2 evolved from reduction of water (H+) was subsequently used for TCE dechlorination, and adding H2 to the reactor increased both the dechlorination rate and the mass of TCE reduced, indicating that a catalytic pathway exists. RNIP yielded unsaturated products (acetylene and ethene). Nearly half (46%) of the Fe0 in RNIP was unavailable for TCE dechlorination over the course of the experiment and remained in the particles. Adding H2 did not change the reaction rate or efficiency of RNIP. Despite this, the mass of TCE dechlorinated per mass of Fe0 added was similar for both particles due to the less saturated products formed from RNIP. The oxide shell composition and the boron content are the most likely causes for the differences between the particle types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app