JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Molecular dynamics simulation of the aggregation of the core-recognition motif of the islet amyloid polypeptide in explicit water.

Proteins 2005 May 16
The formation of amyloid fibrils is associated with major human diseases. Nevertheless, the molecular mechanism that directs the nucleation of these fibrils is not fully understood. Here, we used molecular dynamics simulations to study the initial self-assembly stages of the NH2-NFGAIL-COOH peptide, the core-recognition motif of the type II diabetes associated islet amyloid polypeptide. The simulations were performed using multiple replicas of the monomers in explicit water, in a confined box starting from a random distribution of the peptides at T = 300 K and T = 340 K. At both temperatures the formation of unique clusters was observed after a few nanoseconds. Structural analysis of the clusters clearly suggested the formation of "flat" ellipsoid-shaped clusters through a preferred locally parallel alignment of the peptides. The unique assembly is facilitated by a preference for an extended conformation of the peptides and by intermolecular aromatic interactions. Taken together, our results may provide a description of the molecular recognition determinants involved in fibril formation, in terms of the atomic detailed structure of nascent aggregates. These observations may yield information on new ways to control this process for either materials development or drug design.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app