Comparative Study
In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes.

Although diabetes is a major risk factor for vascular diseases, e.g., hypertension and atherosclerosis, mechanisms that underlie the "risky" aspects of diabetes remain obscure. The current study is intended to examine the notion that diabetic endothelial dysfunction stems from a heightened state of oxidative stress induced by an imbalance between vascular production and scavenging of reactive oxygen/nitrogen species. Goto-Kakizaki (GK) rats were used as a genetic animal model for non-obese type II diabetes. Nitric oxide (NO) bioavailability and O2- generation in aortic tissues of GK rats were assessed using the Griess reaction and a lucigenin-chemiluminescence-based technique, respectively. Organ chamber-based isometric tension studies revealed that aortas from GK rats had impaired relaxation responses to acetylcholine whereas a rightward shift in the dose-response curve was noticed in the endothelium-independent vasorelaxation exerted by the NO donor sodium nitroprusside. An enhancement in superoxide (O2-) production and a diminuation in NO bioavailability were evident in aortic tissues of GK diabetic rats. Immunoblotting and high-performance liquid chromatography (HPLC)-based techniques revealed, respectively, that the above inverse relationship between O2- and NO was associated with a marked increase in the protein expression of nitric oxide synthase (eNOS) and a decrease in the level of its cofactor tetrahydrobiopterin (BH4) in diabetic aortas. Endothelial denudation by rubbing or the addition of pharmacological inhibitors of eNOS (e.g. N(omega)-nitro-L-arginine methyl ester (L-NAME)), and NAD(P)H oxidase (e.g. diphenyleneiodonium, apocynin) strikingly reduced the diabetes-induced enhancement in vascular O2- production. Aortic contents of key markers of oxidative stress (isoprostane F2alpha III, protein-bound carbonyls, nitrosylated protein) in connection with the protein expression of superoxide generating enzyme NAD(P)H oxidase (e.g. p47phox, pg91phox), a major source of reactive oxygen species in vascular tissue, were elevated as a function of diabetes. In contrast, the process involves in the vascular inactivation of reactive oxygen species exemplified by the activity of CuZnSOD was reduced in this diseased state. Our studies suggest that diabetes produces a cascade of events involving production of reactive oxygen species from the NADPH oxidase leading to oxidation of BH4 and uncoupling of NOS. This promotes the oxidative inactivation of NO with subsequent formation of peroxynitrite. An alteration in the balance of these bioactive radicals in concert with a defect in the antioxidant defense counteracting mechanism may favor a heightened state of oxidative stress. This phenomenon could play a potentially important role in the pathogenesis of diabetic endothelial dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app