JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Advanced glycation end-product-induced mitogenesis and collagen production are dependent on angiotensin II and connective tissue growth factor in NRK-49F cells.

Diabetic nephropathy (DN) is characterized by glomerulopathy and tubulointerstitial expansion followed by renal fibrosis. Angiotensin II (Ang II) and connective tissue growth factor (CTGF) are involved in the pathogenesis of DN, while Janus kinase 2 (JAK2) is important in advanced glycation end-product (AGE)-induced effects in renal interstitial (NRK-49F) fibroblasts. Thus, we studied the role of Ang II, CTGF, and JAK2 in AGE-induced effects in NRK-49F cells. We found that AGE (150 microg/ml) increased mitogenesis and type I collagen production at 7 days while Ang II (10(-7)M) increased mitogenesis and type I collagen production at 3 days. We also found that AGE (150 microg/ml) increased angiotensinogen protein at 2 days, which was attenuated by AG-490 (a JAK2 inhibitor). AGE (150 microg/ml) increased CTGF mRNA and protein expression at 3 and 5 days, respectively. Ang II (10(-7)M) increased CTGF mRNA and protein expression at 1 and 2 days, respectively, which were attenuated by AG-490. Moreover, losartan (a type I angiotensin receptor blocker) and captopril (an angiotensin converting enzyme inhibitor) attenuated AGE-induced CTGF mRNA/protein expression while attenuating AGE-induced mitogenesis and type I collagen production. AG-490 and CTGF antisense (but not sense) oligodeoxynucleotide (ODN) attenuated Ang II (10(-7)M) and AGE-induced mitogenesis and type I collagen production at 3 and 7 days, respectively. We concluded that AGE (150 microg/ml)-induced mitogenesis and type I collagen production are dependent on the Ang II-JAK2-CTGF pathway in NRK-49F cells. Moreover, Ang II-induced mitogenesis and type I collagen production are dependent on the JAK2-CTGF pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app