Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization and properties of G4X mutants of Ralstonia eutropha PHA synthase for poly(3-hydroxybutyrate) biosynthesis in Escherichia coli.

Modification of the type I polyhydroxyalkanoate synthase of Ralstonia eutropha (PhaC(Re)) was performed through systematic in vitro evolution in order to obtain improved PhaC(Re) having an enhanced activity of poly(3-hydroxybutyrate) (PHB) synthesis in recombinant Escherichia coli. For the first time, a beneficial G4D N-terminal mutation important for the enhancement of both PHB content in dry cells and PhaC(Re) level in vivo was identified. Site-directed saturation mutagenesis at the G4 position enabled us to identify other mutations conferring similar enhanced characteristics. In addition, the PHB homopolymer synthesized by most G4X single mutants also had higher molecular weights than that of the wild-type. In vitro enzymatic assays of purified G4D mutant PhaC(Re) revealed that the mutant enzyme exhibited slightly lower activity and reaction efficiency compared to the wild-type enzyme. [diagram in text].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app