JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
REVIEW
Add like
Add dislike
Add to saved papers

Neurobiologic processes in drug reward and addiction.

Neurophysiologic processes underlie the uncontrolled, compulsive behaviors defining the addicted state. These"hard-wired"changes in the brain are considered critical for the transition from casual to addictive drug use. This review of preclinical and clinical (primarily neuroimaging) studies will describe how the delineation between pleasure, reward, and addiction has evolved as our understanding of the biologic mechanisms underlying these processes has progressed. Although the mesolimbic dopaminergic efflux associated with drug reward was previously considered the biologic equivalent of pleasure, dopaminergic activation occurs in the presence of unexpected and novel stimuli (either pleasurable or aversive) and appears to determine the motivational state of wanting or expectation. The persistent release of dopamine during chronic drug use progressively recruits limbic brain regions and the prefrontal cortex, embedding drug cues into the amygdala (through glutaminergic mechanisms) and involving the amygdala, anterior cingulate, orbitofrontal cortex, and dorsolateral prefrontal cortex in the obsessive craving for drugs. The abstinent, addicted brain is subsequently primed to return to drug use when triggered by a single use of drug, contextual drug cues, craving, or stress, with each process defined by a relatively distinct brain region or neural pathway. The compulsive drive toward drug use is complemented by deficits in impulse control and decision making, which are also mediated by the orbitofrontal cortex and anterior cingulate. Within this framework, future targets for pharmacologic treatment are suggested.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app