JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Simultaneous enantioseparation and tandem UV-MS detection of eight beta-blockers in micellar electrokinetic chromatography using a chiral molecular micelle.

Analytical Chemistry 2005 March 16
The feasibility of using a new and more versatile polymeric chiral surfactant, i.e., poly(sodium N-undecenoxy carbonyl-L-leucinate (poly-L-SUCL) is investigated for simultaneous enantioseparation and detection of eight structurally similar beta-blockers with tandem UV and MS detection. Three optimization approaches, i.e., direct infusion-MS, capillary zone electrophoresis-MS, and chiral micellar electrokinetic chromatography-mass spectrometry (CMEKC-MS), were investigated to optimize sheath liquid parameters, spray chamber parameters, and CMEKC separation parameters for maximum sensitivity and chiral resolution. Compared to unpolymerized micelle of L-SUCL, the use of micelle polymer (i.e., poly-L-SUCL) provided significantly higher separation efficiency, lower separation current, and higher detection sensitivity for CMEKC-ESI-MS of beta-blockers. It was also observed that, unlike monomeric L-SUCL, polymeric L-SUCL provided enantioseparation of all beta-blockers even at the lowest surfactant concentration (i.e., 5 mM poly-L-SUCL). Under optimum CMEKC and ESI-MS conditions (15 mM poly-L-SUCL, 25 mM each of NH4OAc and TEA (pH 8.0); 80% (v/v) methanol sheath liquid containing 40 mM NH4OAc (pH 8.0); sheath liquid flow rate, 5.0 microL/min; drying gas flow rate, 5 L/min; drying gas temperature, 200 degrees C; nebulizing pressure, 6 psi (0.414 bar); capillary voltage, +2.5 kV; fragmentor voltage, 85 V), baseline enantioseparation of eight beta-blockers was achieved by tandem UV (in approximately 30 min) and MS (in approximately 60 min) detection. Calibration curves for all beta-blockers were linear in the range of 0.01-0.6 mM for both CMEKC-UV and CMEKC-MS methods, but the later method provided better concentration limit of detection with similar RSD for migration time and peak areas. The CMEKC-ESI-MS method appears suitable for use as a routine procedure for high-throughput separation of beta-blockers with high sensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app