Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy

Saif A Haque, Emilio Palomares, Byung M Cho, Alex N M Green, Narukuni Hirata, David R Klug, James R Durrant
Journal of the American Chemical Society 2005 March 16, 127 (10): 3456-62
In this paper we focus upon the electron injection dynamics in complete dye-sensitized nanocrystalline metal oxide solar cells (DSSCs). Electron injection dynamics are studied by transient absorption and emission studies of DSSCs and correlated with device photovoltaic performance and charge recombination dynamics. We find that the electron injection dynamics are dependent upon the composition of the redox electrolyte employed in the device. In a device with an electrolyte composition yielding optimum photovoltaic device efficiency, electron injection kinetics exhibit a half time of 150 ps. This half time is 20 times slower than that for control dye-sensitized films covered in inert organic liquids. This retardation is shown to result from the influence of the electrolyte upon the conduction band energetics of the TiO2 electrode. We conclude that optimum DSSC device performance is obtained when the charge separation kinetics are just fast enough to compete successfully with the dye excited-state decay. These conditions allow a high injection yield while minimizing interfacial charge recombination losses, thereby minimizing "kinetic redundancy" in the device. We show furthermore that the nonexponential nature of the injection dynamics can be simulated by a simple inhomogeneous disorder model and discuss the relevance of our findings to the optimization of both dye-sensitized and polymer based photovoltaic devices.


You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Trending on Read

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"