JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana.

Plant Journal 2005 March
Nicotiana benthamiana leaves display a visible plant cell death response when infiltrated with a high titer inoculum of the non-host pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). This visual phenotype was used to identify overlapping cosmid clones from a genomic cosmid library constructed from the Xcv strain, GM98-38. Individual cosmid clones from the Xcv library were conjugated into X. campestris pv. campestris (Xcc) and exconjugants were scored for an altered visual high titer inoculation response in N. benthamiana. The molecular characterization of the cosmid clones revealed that they contained a novel gene, xopX, that encodes a 74-kDa type III secretion system (TTSS) effector protein. Agrobacterium-mediated transient expression of XopX in N. benthamiana did not elicit the plant cell death response although detectable XopX protein was produced. Interestingly, the plant cell death response occurred when the xopX Agrobacterium-mediated transient expression construct was co-inoculated with strains of either XcvDeltaxopX or Xcc, both lacking xopX. The co-inoculation complementation of the plant cell death response also depends on whether the Xanthomonas strains contain an active TTSS. Transgenic 35S-xopX-expressing N. benthamiana plants also have the visible plant cell death response when inoculated with the non-xopX-expressing strains XcvDeltaxopX and Xcc. Unexpectedly, transgenic 35S-xopX N. benthamiana plants displayed enhanced susceptibility to bacterial growth of Xcc as well as other non-xopX-expressing Xanthomonas and Pseudomonas strains. This result is also consistent with the increase in bacterial growth on wild type N. benthamiana plants observed for Xcc when XopX is expressed in trans. Furthermore, XopX contributes to the virulence of Xcv on host pepper (Capsicum annuum) and tomato (Lycopersicum esculentum) plants. We propose that the XopX bacterial effector protein targets basic innate immunity in plants, resulting in enhanced plant disease susceptibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app