Exciton dynamics of GaSe nanoparticle aggregates

H Tu, K Mogyorosi, D F Kelley
Journal of Chemical Physics 2005 January 22, 122 (4): 44709
Time-resolved and static spectroscopic results on GaSe nanoparticle aggregates are presented to elucidate the exciton relaxation and diffusion dynamics. These results are obtained in room-temperature TOP/TOPO solutions at various concentrations. The aggregate absorption spectra are interpreted in terms of electrostatic coupling and covalent interactions between particles. The spectra at various concentrations may then be interpreted in terms of aggregate distributions calculated from a simple equilibrium model. These distributions are used to interpret concentration-dependent emission anisotropy kinetics and time-dependent emission spectral shifts. The emission spectra are reconstructed from the static emission spectra and decay kinetics obtained at a range of wavelengths. The results indicate that the aggregate z axis persistence length is about 9 particles. The results also show that the one-dimensional exciton diffusion coefficient is excitation wavelength dependent and has a value of about 2 x 10(-5) cm(2)/s following 406 nm excitation. Although exciton diffusion results in very little energy relaxation, subsequent hopping of trapped electron/hole pairs occurs by a Forster mechanism and strongly red shifts the emission spectrum.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"