Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product.

SAP is an adaptor protein expressed in T cells and natural killer cells. It plays a critical role in immunity, as it is mutated in humans with X-linked lymphoproliferative syndrome (XLP), a fatal immunodeficiency characterized by an abnormal response to Epstein-Barr virus (EBV) infection. SAP interacts with the SLAM family receptors and promotes transduction signal events by these receptors through its capacity to recruit and activate the Src kinase FynT. Because it has been previously established that FynT is selectively required for the development of NKT cells, we examined NKT cells in SAP-deficient mice and in humans with XLP. In the absence of SAP, the development of NKT cells is severely impaired both in mice and in humans. These results imply that SAP is a potent regulator of NKT cell development. They also identify for the first time a defect in NKT cells associated with a human primary immunodeficiency, revealing a potential role of NKT cells in the immune response to EBV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app