Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Simultaneous generation of CD8+ and CD4+ melanoma-reactive T cells by retroviral-mediated transfer of a single T-cell receptor.

Cancer Research 2005 Februrary 16
Adoptive immunotherapy of cancer requires the generation of large numbers of tumor antigen-reactive T cells for transfer into cancer patients. Genes encoding tumor antigen-specific T-cell receptors can be introduced into primary human T cells by retroviral mediated gene transfer as a potential method of providing any patient with a source of autologous tumor-reactive T cells. A T-cell receptor-specific for a class I MHC (HLA-A2)-restricted epitope of the melanoma antigen tyrosinase was isolated from a CD4(+) tumor-infiltrating lymphocyte (TIL 1383I) and introduced into normal human peripheral blood lymphocytes by retroviral transduction. T-cell receptor-transduced T cells secreted various cytokines when cocultured with tyrosinase peptide-loaded antigen-presenting cells as well as melanoma cells in an HLA-A2-restricted manner, and could also lyse target cells. Furthermore, T-cell clones isolated from these cultures showed both CD8(+) and CD4(+) transduced T cells could recognize HLA-A2(+) melanoma cells, giving us the possibility of engineering class I MHC-restricted effector and T helper cells against melanoma. The ability to confer class I MHC-restricted tumor cell recognition to CD4(+) T cells makes the TIL 1383I TCR an attractive candidate for T-cell receptor gene transfer-based immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app