Comparison of the antinociceptive profiles of gabapentin and 3-methylgabapentin in rat models of acute and persistent pain: implications for mechanism of action

M O Urban, K Ren, K T Park, B Campbell, N Anker, B Stearns, J Aiyar, M Belley, C Cohen, L Bristow
Journal of Pharmacology and Experimental Therapeutics 2005, 313 (3): 1209-16
The anticonvulsant gabapentin (GBP) has been shown effective for the treatment of neuropathic pain, although its mechanism of action remains unclear. A recent report has suggested that binding to the alpha(2)delta subunit of voltage-gated calcium channels contributes to its antinociceptive effect, based on the stereoselective efficacy of two analogs: (1S,3R)3-methylgabapentin (3-MeGBP) (IC(50) = 42 nM), which is effective in neuropathic pain models; and (1R,3R)3-MeGBP (IC(50) > 10,000 nM), which is ineffective (Field et al., 2000). The present study was designed to further examine the profiles of GBP and 3-MeGBP in rat models of acute and persistent pain. Systemic administration of GBP or (1S,3R)3-MeGBP inhibited tactile allodynia in the spinal nerve ligation model of neuropathic pain, whereas (1R,3R)3-MeGBP was ineffective. The antiallodynic effect of GBP, but not (1S,3R)3-MeGBP, was blocked by i.t. injection of the GABA(B) receptor antagonist [3-[[(3,4-dichlorophenyl)methyl]amino]propyl](diethoxymethyl)phosphinic acid (CGP52432). Systemic GBP or (1S,3R)3-MeGBP also inhibited the second phase of formalin-evoked nociceptive behaviors, whereas (1R,3R)3-MeGBP was ineffective. However, both (1S,3R)3-MeGBP and (1R,3R)3-MeGBP, but not GBP, inhibited first phase behaviors. In the carrageenan model of inflammatory pain, systemic GBP or (1R,3R)3-MeGBP failed to inhibit thermal hyperalgesia, whereas (1S,3R)3-MeGBP had a significant, albeit transient, effect. Systemic (1S,3R)3-MeGBP, but not GBP or (1R,3R)3-MeGBP, also produced an antinociceptive effect in the warm water tail withdrawal test of acute pain. These data demonstrate that GBP and 3-MeGBP display different antinociceptive profiles, suggesting dissimilar mechanisms of antinociceptive action. Thus, the stereoselective efficacy of 3-MeGBP, presumably related to alpha(2)delta binding, likely does not completely account for the mechanism of action of GBP.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"