Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibitory effects of vitamin A on TCDD-induced cytochrome P-450 1A1 enzyme activity and expression.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an extremely potent environmental contaminant that produces a wide range of adverse biological effects, including the induction of cytochrome P450 1A1(CYP1A1) that may enhance the toxic effects of TCDD. Several studies indicated that concurrent supplementation of vitamin A could reduce the toxicity, and potentially inhibit CYP1A1 activity (measured as ethoxyresorufin-O-deethylase [EROD] activity). In the present study, we investigated the in vivo effects of vitamin A on EROD activities and the expression of CYP1A1 in the liver of TCDD-treated mice. In Experiment I, the mice were given a single oral dose of 40 mug TCDD/kg body weight with or without the continuous administration of 2500 IU vitamin A/kg body weight/day, and were killed on day 1, 3, 7, 14, or 28. In Experiment II, the mice were given daily an oral dose of 0.1 mug TCDD/kg body weight with or without supplement of 2000 IU vitamin A/kg body weight, and were killed on day 14, 28, or 42. In both experiments, TCDD caused liver damage and increase in relative liver weights, augmented the EROD activities and CYP1A1 expression, and increased the aryl hydrocarbon receptor (AhR) mRNA expression, but did not alter the AhR nuclear translocator (ARNT) mRNA expression. CYP1A1 mRNA expression and AhR mRNA expression showed a similar time course. The liver damage in TCDD + vitamin A-treated mice was less severe than that in TCDD-treated mice. EROD activities, CYP1A1 expression, and AhR mRNA expression in vitamin A + TCDD-treated mice were lower than those in TCDD-treated mice, indicating that supplementation of vitamin A might attenuate the liver damage caused by TCDD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app