Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Functional characterization and comparison of the outer blood-retina barrier and the blood-brain barrier.

PURPOSE: To determine efflux systems of the outer blood-retina barrier (oBRB) and compare the oBRB with the blood-brain barrier (BBB).

METHODS: Porcine oBRB structure and transport characteristics of freshly dissected intact tissue sheets were investigated with scanning electron microscopy, immunocytochemistry, vital dye labeling, and pharmacological agents, using HPLC/mass spectrometry. To compare drug permeation across the oBRB and the BBB, three different systems were used: (1) oBRB tissue sheets in a two-chamber device in vitro; (2) an in vitro BBB model composed of purified astrocytes and brain capillary endothelial cells on transfilter membranes; and (3) an in vivo model based on the brain-plasma ratio of drugs in mice.

RESULTS: Efflux pumps (multidrug resistance protein [P-gp] and multidrug resistance-associated protein [MRP]) were demonstrated by antibody staining. Side-specific application of three P-gp and MRP substrates and selective transport inhibition suggested that both membrane proteins were preferentially located on the choroidal side of the oBRB. Therefore, the efflux was directed toward the blood, as in the BBB. To relate the transport characteristics of the oBRB to the BBB, up to nine different test compounds were used. The ranking of the permeability coefficients (P(e)) and the brain-plasma ratios of test compounds indicated that the oBRB has barrier and carrier features similar to those of the BBB in vitro and in vivo.

CONCLUSIONS: Despite the fact that epithelial oBRB and endothelial BBB have developed as separate entities with many site-specific functions, their transport and permeation characteristics display surprising similarities, that include the polarized expression of the two major efflux pumps P-gp and MRP.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app