Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mechanism of feedback regulation of insulin receptor substrate-1 phosphorylation in primary adipocytes.

Serine and threonine phosphorylation of IRS-1 (insulin receptor substrate-1) has been reported to decrease its ability to be tyrosine-phosphorylated by the insulin receptor. Insulin itself may negatively regulate tyrosine phosphorylation of IRS-1 through a PI3K (phosphoinositide 3-kinase)-dependent feedback pathway. In the present study, we examined the regulation and role of IRS-1 serine phosphorylation in the modulation of IRS-1 tyrosine phosphorylation in physiologically relevant cells, namely freshly isolated primary adipocytes. We show that insulin-stimulated phosphorylation of Ser312 and Ser616 in IRS-1 was relatively slow, with maximal phosphorylation achieved after 20 and 5 min respectively. The effect of insulin on phosphorylation of both these sites required the activation of PI3K and the MAPKs (mitogen-activated protein kinases) ERK1/2 (extracellular-signal-regulated kinase 1 and 2), but not the activation of mTOR (mammalian target of rapamycin)/p70S6 kinase, JNK (c-Jun N-terminal kinase) or p38MAPK. Although inhibition of PI3K and ERK1/2 both substantially decreased insulin-stimulated phosphorylation of Ser312 and Ser616, only wortmannin enhanced insulin-stimulated tyrosine phosphorylation of IRS-1. Furthermore, inhibition of mTOR/p70S6 kinase, JNK or p38MAPK had no effect on insulin-stimulated IRS-1 tyrosine phosphorylation. The differential effect of inhibition of ERK1/2 on insulin-stimulated IRS-1 phosphorylation of Ser312/Ser616 and tyrosine indicates that these events are independent of each other and that phosphorylation of Ser312/Ser616 is not responsible for the negative regulation of IRS-1 tyrosine phosphorylation mediated by PI3K in primary adipocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app