QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley

Xinyou Yin, Paul C Struik, Fred A van Eeuwijk, Piet Stam, Jianjun Tang
Journal of Experimental Botany 2005, 56 (413): 967-76
Combining ecophysiological modelling and genetic mapping has increasingly received attention from researchers who wish to predict complex plant or crop traits under diverse environmental conditions. The potential for using this combined approach to predict flowering time of individual genotypes in a recombinant inbred line (RIL) population of spring barley (Hordeum vulgare L.) was examined. An ecophysiological phenology model predicts preflowering duration as affected by temperature and photoperiod, based on the following four input traits: f(o) (the minimum number of days to flowering at the optimum temperature and photoperiod), theta1 and theta2 (the development stages for the start and the end of the photoperiod-sensitive phase, respectively), and delta (the photoperiod sensitivity). The model-input trait values were obtained from a photoperiod-controlled greenhouse experiment. Assuming additivity of QTL effects, a multiple QTL model was fitted for the model-input traits using composite interval mapping. Four to seven QTL were identified for each trait. Each trait had at least one QTL specific to that trait alone. Other QTL were shared by two or all traits. Values of the model-input traits predicted for the RILs from the QTL model were fed back into the ecophysiological model. This QTL-based ecophysiological model was subsequently used to predict preflowering duration (d) for eight field trial environments. The model accounted for 72% of the observed variation among 94 RILs and 94% of the variation among the two parents across the eight environments, when observations in different environments were pooled. However, due to the low percentage (34-41%) of phenotypic variation accounted for by the identified QTL for three model-input traits (theta1, theta2 and delta), the QTL-based model accounted for somewhat less variation among the RILs than the model using original phenotypic input trait values. Nevertheless, days to flowering as predicted from the QTL-based ecophysiological model were highly correlated with days to flowering as predicted from QTL-models per environment for days to flowering per se. The ecophysiological phenology model was thus capable of extrapolating (QTL) information from one environment to another.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"