COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Changed iron regulation in scrapie-infected neuroblastoma cells.

Prion diseases are characterized by the conversion of the normal cellular prion protein PrP(C) into a pathogenic isoform, PrP(Sc). The mechanisms involved in neuronal cell death in prion diseases are largely unknown, but accumulating evidence has demonstrated oxidative impairment along with metal imbalances in scrapie-infected brains. In this study, we report changes in cellular iron metabolism in scrapie-infected mouse neuroblastoma N2a cells (ScN2a). We detected twofold lower total cellular iron and calcein-chelatable cytosolic labile iron pool (LIP) in ScN2a cells as compared to the N2a cells. We also measured in ScN2a cells significantly lower activities of iron regulatory proteins 1 and 2 (IRP1 and IRP2, respectively), regulators of cellular iron by sensing cytosolic free iron levels and controlling posttranscriptionally the expression of the major iron transport protein transferrin receptor 1 (TfR1) and the iron sequestration protein ferritin. IRP1 and IRP2 protein levels were decreased by 40% and 50%, respectively, in ScN2a cells. TfR1 protein levels were fourfold reduced and ferritin levels were threefold reduced in ScN2a cells. TfR1 and ferritin mRNA levels were significantly reduced in ScN2a cells. ScN2a cells responded normally to iron and iron chelator treatment with respect to the activities of IRP1 and IRP2, and biosynthesis of TfR1 and ferritin. However, the activities of IRP1 and IRP2, and protein levels of TfR1 and ferritin, were still significantly lower in iron-depleted ScN2a cells as compared to the N2a cells, suggesting lower need for iron in ScN2a cells. Our results demonstrate that scrapie infection leads to changes in cellular iron metabolism, affecting both total cellular and cytosolic free iron, and the activities and expression of major regulators of cellular iron homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app