JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Epigallocatechin-3-gallate causes the p21/WAF1-mediated G(1)-phase arrest of cell cycle and inhibits matrix metalloproteinase-9 expression in TNF-alpha-induced vascular smooth muscle cells.

It has been suggested that epigallocatechin-3-gallate (EGCG), a major catechin found in green tea, plays a role in preventing the progression of atherosclerosis. Although EGCG has anti-atherogenic effects on vascular smooth muscle cells (VSMC), the molecular mechanisms associated with TNF-alpha-induced VSMC are not known with certainty. To determine whether EGCG has the capacity to modulate VSMC responses, cell cycle regulation and MMP-9 expression were examined in TNF-alpha-induced VSMC. Treatment with EGCG, which blocks the cell cycle in the G(1) phase, induced a down-regulation of cyclins and CDKs and an up-regulation in the expression of p21/WAF1, a CDK inhibitor, whereas the up-regulation of p27 by EGCG was not observed. Moreover, treatment with EGCG markedly increased the promoter activity of the p21/WAF1 gene. Immunoblot and deletion analysis results for the p21/WAF1 promoter showed that EGCG induced the expression of p21/WAF1 independent of the p53 pathway. Zymographic and immunoblot analyses showed that EGCG suppressed TNF-alpha-induced MMP-9 expression in a dose-dependent manner. Further experiments demonstrated that EGCG reduced the transcriptional activity of activator protein-1 (AP-1) and nuclear factor kappaB (NF-kappaB), two important nuclear transcription factors that are involved in MMP-9 expression. Collectively, these results suggest that EGCG inhibits G(1) to S-phase cell cycle progress and MMP-9 expression through the transcription factors NF-kappaB and AP-1 in TNF-alpha-induced VSMC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app