Effect of dropouts on sample size estimates for test on trends across repeated measurements

Chul Ahn, Sin-Ho Jung
Journal of Biopharmaceutical Statistics 2005, 15 (1): 33-41
Sample size calculation is an important component at the design stage of clinical trials. We investigate the implications of dropouts for the sample size estimates in testing differences in the rates of changes produced by two treatments in a randomized parallel-groups repeated measurement design. Statistical models for calculating sample sizes for repeated measurement designs often fail to take into account the impact of dropouts correctly. In this article, we examine the impact of dropouts on sample size estimate and compare the power with the approach of Jung and Ahn [Jung, S. H., Ahn, C. (2003). Sample size estimation for GEE method for comparing slopes in repeated measurements data. Stat. Med. 22: 1305-1315] with that suggested by Patel and Rowe [Patel, H., Rowe, E. (1999). Sample size for comparing linear growth curves. J. Biopharm. Stat. 9:339-350] through a simulation study.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"