Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of vascular endothelial growth factor (VEGF) does not affect early renal changes in a rat model of lean type 2 diabetes.

Type 2 diabetes is the most frequent cause of end-stage renal failure in many Western countries. Approximately 10-15 % of all type 2 diabetics are lean. Various growth factors and cytokines have been implicated in the pathophysiology of diabetic kidney disease, including vascular endothelial growth factor (VEGF). To elucidate a role for VEGF in the renal changes associated with type 2 diabetes, we examined the effect of a VEGF-antibody (ab) on early renal changes in the Goto-Kakizaki (GK) rat, a lean type 2 diabetes model. GK-rats were treated for 6 weeks with the VEGF-ab or with an isotype-matched irrelevant IgG. Wistar rats were used as non-diabetic controls. Placebo-treated GK-rats showed a pronounced increase in glomerular volume and urinary albumin excretion (UAE) and no change in the renal expression of endothelial nitric oxide synthase (eNOS) compared to placebo-treated non-diabetic controls. Kidney weight and creatinine clearance were no different between the groups. VEGF-ab treatment had no effect on glomerular volume, UAE, eNOS expression, body weight, blood glucose levels or food intake, but lowered serum insulin levels in non-diabetic and diabetic animals. We conclude that VEGF inhibition has minimal effects on early renal changes in GK-rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app