Comparative Study
Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Improving performance of distribution tracking through background mismatch.

This paper proposes a new density matching method based on background mismatching for tracking of nonrigid moving objects. The new tracking method extends the idea behind the original density-matching tracker, which tracks an object by finding a contour in which the photometric density sampled from the enclosed region most closely matches a model density. This method can be quite sensitive to the initial curve placements and model density. The new method eliminates these sensitivities by adding a second term to the optimization: The mismatch between the model density and the density sampled from the background. By maximizing this term, the tracking algorithm becomes significantly more robust in practice. Furthermore, we show the enhanced ability of the algorithm to deal with target objects which possess smooth or diffuse boundaries. The tracker is in the form of a partial differential equation, and is implemented using the level-set framework. Experiments on synthesized images and real video sequences show our proposed methods are effective and robust; the results are compared with several existing methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app