JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Glucocorticoid programming.

Epidemiological evidence suggests that an adverse fetal environment permanently programs physiology, leading to increased risks of cardiovascular, metabolic, and neuroendocrine disorders in adulthood. Prenatal glucocorticoid excess or stress might link fetal maturation and adult pathophysiology. In a variety of animal models, prenatal glucocorticoid exposure or inhibition of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), the fetoplacental "barrier" to maternal glucocorticoids, reduces birth weight and causes permanent hypertension, hyperglycemia, and increased hypothalamic-pituitary-adrenal axis (HPA) activity and behavior resembling anxiety. In humans, 11beta-HSD2 gene mutations cause low birth weight and reduced placental 11beta-HSD2 activity associated with intrauterine growth retardation. Low birth weight babies have higher plasma cortisol levels throughout adult life, indicating HPA programming. The molecular mechanisms may reflect permanent changes in the expression of specific transcription factors; key is the glucocorticoid receptor itself. Differential programming of the glucocorticoid receptor in different tissues reflects effects upon one or more of the multiple tissue-specific alternate first exons/promoters of the glucocorticoid receptor gene. Overall, the data suggest that either pharmacological or physiological exposure to excess glucocorticoids prenatally programs pathologies in adult life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app