JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis.

Development 2005 March
The higher-plant shoot apical meristem is a dynamic structure continuously producing cells that become incorporated into new leaves, stems and flowers. The maintenance of a constant flow of cells through the meristem depends on coordination of two antagonistic processes: self-renewal of the stem cell population and initiation of the lateral organs. This coordination is stringently controlled by gene networks that contain both positive and negative components. We have previously defined the ULTRAPETALA1 (ULT1) gene as a key negative regulator of cell accumulation in Arabidopsis shoot and floral meristems, because mutations in ULT1 cause the enlargement of inflorescence and floral meristems, the production of supernumerary flowers and floral organs, and a delay in floral meristem termination. Here, we show that ULT1 negatively regulates the size of the WUSCHEL (WUS)-expressing organizing center in inflorescence meristems. We have cloned the ULT1 gene and find that it encodes a small protein containing a B-box-like motif and a SAND domain, a DNA-binding motif previously reported only in animal transcription factors. ULT1 and its Arabidopsis paralog ULT2 define a novel small gene family in plants. ULT1 and ULT2 are expressed coordinately in embryonic shoot apical meristems, in inflorescence and floral meristems, and in developing stamens, carpels and ovules. Additionally, ULT1 is expressed in vegetative meristems and leaf primordia. ULT2 protein can compensate for mutant ULT1 protein when overexpressed in an ult1 background, indicating that the two genes may regulate a common set of targets during plant development. Downregulation of both ULT genes can lead to shoot apical meristem arrest shortly after germination, revealing a requirement for ULT activity in early development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app