Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nanomolar concentration of NSC606985, a camptothecin analog, induces leukemic-cell apoptosis through protein kinase Cdelta-dependent mechanisms.

Blood 2005 May 2
As a promising new class of anticancer drugs, camptothecins have advanced to the forefront of several areas of therapeutic and developmental chemotherapy. In the present study, we report that NSC606985, a rarely studied camptothecin analog, induces apoptosis in acute myeloid leukemia (AML) cells NB4 and U937 and inhibits the proliferation without cell death in breakpoint cluster region-Abelson murine leukemia (bcr-abl) kinase-carrying leukemic K562 cells. For apoptosis induction or growth arrest, nanomolar concentrations of NSC606985 are sufficient. At such low concentrations, this agent also significantly inhibits the clonogenic activity of hematopoietic progenitors from patients with AML. For apoptosis induction, NSC606985 rapidly induces the proteolytic activation of protein kinase Cdelta (PKCdelta) with loss of mitochondrial transmembrane potential (DeltaPsim) and caspase-3 activation. Cotreatment with rottlerin, a PKCdelta-specific inhibitor, completely blocks NSC606985-induced mitochondrial DeltaPsim loss and caspase-3 activation, while the inhibition of caspase-3 by z-DEVD-fluoromethyl ketone (Z-DEVD-fmk) only partially attenuates PKCdelta activation and apoptosis. These data indicate that NSC606985-induced PKCdelta activation is an early event upstream to mitochondrial DeltaPsim loss and caspase-3 activation, while activated caspase-3 has an amplifying effect on PKCdelta proteolysis. In addition, NSC606985-induced apoptosis by PKCdelta also involves caspase-3-independent mechanisms. Taken together, our results suggest that NSC606985 is a potential agent for the treatment of AML.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app