JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

AND-34 activates phosphatidylinositol 3-kinase and induces anti-estrogen resistance in a SH2 and GDP exchange factor-like domain-dependent manner.

AND-34, a 95-kDa protein with modest homology to Ras GDP exchange factors, associates with the focal adhesion protein p130Cas. Overexpression of AND-34 confers anti-estrogen resistance in breast cancer cell lines, a property linked to its ability to activate Rac. Here, we show that both the GDP exchange factor-like domain and the SH2 domain of AND-34 are required for Rac activation and for resistance to the estrogen receptor (ER) antagonist ICI 182,780. As phosphatidylinositol 3-kinase (PI3K) signaling can regulate Rac activation, we examined the effects of AND-34 on PI3K. Overexpression of AND-34 in MCF-7 cells increased PI3K activity and augmented Akt Ser(473) phosphorylation and kinase activity. Inhibition of PI3K with LY294002 or a dominant-negative p85 construct blocked AND-34-mediated Rac and Akt activation. Although R-Ras can activate PI3K, transfection with constitutively active R-Ras failed to induce Rac activation and AND-34 overexpression failed to induce R-Ras activation. Treatment of either vector-only or AND-34-transfected ZR-75-1 cells with ICI 182,780 markedly diminished ERalpha levels, suggesting that AND-34-induced anti-estrogen resistance is likely to occur by an ERalpha-independent mechanism. Treatment of a ZR-75-1 breast cancer cell line stably transfected with AND-34 plus 2 micromol/L LY294002 or 10 micromol/L NSC23766, a Rac-specific inhibitor, abrogated AND-34-induced resistance to ICI 182,780. Our studies suggest that AND-34-mediated PI3K activation induces Rac activation and anti-estrogen resistance in human breast cancer cell lines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app