Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Genomic analysis of a spontaneous model of breast cancer metastasis to bone reveals a role for the extracellular matrix.

A clinically relevant model of spontaneous breast cancer metastasis to multiple sites, including bone, was characterized and used to identify genes involved in metastatic progression. The metastatic potential of several genetically related tumor lines was assayed using a novel real-time quantitative RT-PCR assay of tumor burden. Based on this assay, the tumor lines were categorized as nonmetastatic (67NR), weakly metastatic to lymph node (168FARN) or lung (66cl4), or highly metastatic to lymph node, lung, and bone (4T1.2 and 4T1.13). In vitro assays that mimic stages of metastasis showed that highly metastatic tumors lines were more adhesive, invasive, and migratory than the less metastatic lines. To identify metastasis-related genes in this model, each metastatic tumor was array profiled against the nonmetastatic 67NR using 15,000 mouse cDNA arrays. A significant proportion of genes relating to the extracellular matrix had elevated expression in highly metastatic tumors. The role of one of these genes, POEM, was further investigated in the model. In situ hybridization showed that POEM expression was specific to the tumor epithelium of highly metastatic tumors. Decreased POEM expression in 4T1.2 tumors significantly inhibited spontaneous metastasis to the lung, bone, and kidney. Taken together, our data support a role for the extracellular matrix in metastatic progression and describe, for the first time, a role for POEM in this process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app