Add like
Add dislike
Add to saved papers

The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels.

FEBS Letters 2005 January 32
The transition metal Zn is essential for many physiological processes in plants, yet at elevated concentrations this, and the related non-essential metal Cd, can be toxic. Arabidopsis thaliana HMA4, belonging to the Type P1B subfamily of P-type ATPases, has recently been implicated in Zn nutrition, having a role in root to shoot Zn translocation. Using Arabidopsis insertional mutants, it is shown here that disruption of AtHMA4 function also results in increased sensitivity to elevated levels of Cd and Zn, suggesting that AtHMA4 serves an important role in metal detoxification at higher metal concentrations. AtHMA4 and a truncated form lacking the last 457 amino acids both confer Cd and Zn resistance to yeast but a mutant version of the full-length AtHMA4 (AtHMA4-C357G) does not; this demonstrates that the C-terminal region is not essential for this function. Evidence is presented that AtHMA4 functions as an efflux pump.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app