The triple A syndrome is due to mutations in ALADIN, a novel member of the nuclear pore complex

Angela Huebner, A M Kaindl, K P Knobeloch, H Petzold, P Mann, K Koehler
Endocrine Research 2004, 30 (4): 891-9
The triple A syndrome (MIM#231550) is a rare autosomal recessive disorder characterized by adrenocorticotropic hormone (ACTH) resistant adrenal failure, achalasia, alacrima, and a variety of neurological and dermatological features. The triple A syndrome is caused by mutations in the AAAS gene, which encodes a protein known as ALADIN (ALacrima Achalasia aDrenal Insufficiency Neurologic disorder). ALADIN is a new WD-repeat protein that has no significant homology to any previously identified WD-repeat protein. It has been shown that it colocalizes with nuclear pore complexes (NPCs), a finding that strongly suggests an involvement of ALADIN in nucleocytoplasmic transport. An investigation of 110 families with triple A syndrome disclosed mutation hot spots including Q15K (exon 1), and S293P (exon 8), which occur in 17 and 21 families from different geographical regions, respectively. The variable phenotype of all patients cannot be correlated with the localization and the nature of the ALADIN mutations. Thus, modifying genes/factors may be involved in the progression of this neurodegenerative disease. The lack of AAAS mutations in eight patients and negative linkage to chromosome 12q13 in three families are suggestive of genetic heterogeneity. To examine the cellular localization of ALADIN mutants causing triple A syndrome, we investigated nine different ALADIN-mutants: 2 nonsense (W84X, Q456X), 2 frameshift (F157fsX171, G397fsX414) and 5 point mutations (Q15K, L25P, H160R, S263P, L381R) by transfection experiments with green fluorescence protein. Mutants were predominantly localized in the cytoplasm, but also found in the nucleus indicating that ALADIN is essential for NPC targeting. To investigate physiological functions of ALADIN in vivo, we generated and analysed Aaas-/- knockout mice by homologous recombination in embryonic stem cells. Surprisingly, required animals lack any gross abnormality in adrenal and nervous system function. Further studies have to investigate the role of ALADIN at NPCs and to identify interacting proteins. Functional analyses of ALADIN may permit further understanding of its role for adrenocortical function and neurodevelopment.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"