Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells.

Blood 2005 May 16
Treatment for 14 to 24 hours with low concentrations of arsenic trioxide (As2O3, 1-4 microM) caused apoptosis in U-937 promonocytes and other human myeloid leukemia cell lines (HL-60, NB4). This effect was potentiated by cotreatment with the phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 and wortmannin, and the Akt inhibitor Akt(i)5. However, the inhibitors did not increase the toxicity of the mitochondria-targeting drug lonidamine, and the DNA-specific drugs camptothecin and cisplatin, when used under similar experimental conditions as As2O3. The potentiation of As2O3-provoked apoptosis involved the increased disruption of mitochondrial transmembrane potential, increased caspase-3 activation and cytochrome c release from mitochondria, increased Bax and Bid activation, and attenuation of 27-kDa heat shock protein (HSP27) expression; the potentiation was prevented by Bcl-2 overexpression. The PI3K/Akt inhibitors decreased the intracellular glutathione content, and caused intracellular oxidation, as measured by peroxide accumulation. Cotreatment with subcytotoxic concentrations of hydrogen peroxide increased apoptosis induction by As2O3. On the other hand, the treatments did not significantly affect glutathione S-transferase pi expression and activity. These results, which indicate that glutathione is a target of PI3K/Akt in myeloid leukemia cells, may partially explain the selective increase of As2O3 toxicity by PI3K/Akt inhibitors, and may provide a rationale to improve the efficacy of these inhibitors as therapeutic agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app