JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Activation of ERK and p38 kinase mediated keloid fibroblast apoptosis after flashlamp pulsed-dye laser treatment.

BACKGROUND AND OBJECTIVES: Flashlamp pulsed-dye lasers (PDLs) revealed effective regression or arrest in patients with keloids in our clinical studies [Kuo YR et al., Laser Surg Med 2004;34:104-108]. In this study, we further investigated whether the induction of keloid regression seen with PDL treatment through activation in mitogen-activated protein (MAP) kinase and caspase promotes cell apoptosis and reduces fibroblast proliferation.

STUDY DESIGN/MATERIALS AND METHODS: Keloid tissues were obtained from 10 patients with intralesional or punch biopsies prior to and 7 days after PDL treatments [fluence per pulse was 10-18 J/cm2 (mean 14 J/cm2)]. Prior to and after PDL treatments, the proliferating fibroblasts in keloid tissue were immunohistochemically detected by proliferating cell nuclear antigen (PCNA) expression. The apoptotic cell was detected by terminal deoxynucleotidyl transferase dUTP-nick end labeling (TUNEL) staining and fragmented caspase-3 expression. MAP kinase activation as represented by extracellular signal-regulated kinase (ERK), p38 kinase (p38), and c-Jun N-terminal kinase (JNK) expression of keloid tissues was investigated by immunohistochemical (IHC) staining, respectively.

RESULTS: IHC staining indicated that PCNA expression of fibroblasts was significantly reduced in keloid tissue after PDL irradiation. TUNEL assay revealed lower apoptotic cells expression in the keloid tissue prior to laser treatment. Following laser treatment, apoptotic cells with relatively strong DNA damage and fragmentation were seen in all keloid biopsy samples, especially in the keloid fibroblast population. The activation of ERK and p38 MAP kinase increased significantly in keloid tissue after PDL treatment. JNK was shown to be unchanged.

CONCLUSIONS: The PDL treatment is shown to induce keloid regression through suppression of keloid fibroblast proliferation, induction of apoptosis, and upregulation of ERK and p38 MAP kinase activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app