JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Interleukin-6 regulation of transforming growth factor (TGF)-beta receptor compartmentalization and turnover enhances TGF-beta1 signaling.

Transforming growth factor (TGF)-beta1 is a key cytokine involved in the pathogenesis of fibrosis in many organs, whereas interleukin (IL)-6 plays an important role in the regulation of inflammation. Recent reports demonstrate interaction between the two cytokines in disease states. We have assessed the effect of IL-6 on TGF-beta1 signaling and defined the mechanism by which this occurred. Stimulation of Smad-responsive promoter (SBE)4-Lux activity by TGF-beta1 was significantly greater in the presence of IL-6 than that induced by TGF-beta1 alone. Augmented TGF-beta1 signaling following the addition of IL-6 appeared to be mediated through binding to the cognate IL-6 receptor, the presence of which was confirmed by fluorescence-activated cell sorting and Stat-specific signaling. TGF-beta1 receptors internalize by both caveolin-1 (Cav-1) lipid raft and early endosome antigen 1 (EEA-1) non-lipid raft pathways, with non-lipid raft-associated internalization increasing TGF-beta1 signaling. Affinity labeling of TGF-beta1 receptors demonstrated that IL-6 stimulation resulted in increased partitioning of TGF-beta receptors to the non-lipid raft fraction. There was no change in expression of Cav-1; however, following IL-6 stimulation, co-immunoprecipitation demonstrated decreased association of IL-6 receptor with Cav-1. Increased TGF-beta1-dependent Smad signaling by IL-6 was significantly attenuated by inhibition of clathrin-mediated endocytosis and augmented by depletion of membrane cholesterol. These results indicate that IL-6 increased trafficking of TGF-beta1 receptors to non-lipid raft-associated pools results in augmented TGF-beta1 Smad signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app