JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress.

Phytoremediation potentials of four poplar lines, Populus nigra (N-SL clone), Populus canescens, and two transgenic P. canescens clones were investigated using in vitro leaf discs cultures. The transgenic poplars overexpressed a bacterial gene encoding gamma-glutamylcysteine synthetase in the cytosol (11ggs) or in the chlopoplasts (6LgI), and therefore, they contained an elevated level of glutathione. Leaf discs of poplar clones were exposed to different concentrations of ZnSO(4) for 21 days. Zinc(2+) was phytotoxic only at high concentrations (10(-2) to 10(-1) M) at all P. canescens lines, but P. nigra was more sensitive. Transgenic poplars showed elevated heavy metal uptake as compared to the nontransformed clones. Treatments with zinc(2+) strongly induced the activity of glutathione S-transferase enzyme in untransformed poplar lines but to a lesser extent in the transgenic clones. These results suggest that transgenic poplars are more suitable for phytoremediation of soils contaminated with zinc(2+) than wild-type plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app