Stable real-time 3D tracking using online and offline information

Luca Vacchetti, Vincent Lepetit, Pascal Fua
IEEE Transactions on Pattern Analysis and Machine Intelligence 2004, 26 (10): 1385-91
We propose an efficient real-time solution for tracking rigid objects in 3D using a single camera that can handle large camera displacements, drastic aspect changes, and partial occlusions. While commercial products are already available for offline camera registration, robust online tracking remains an open issue because many real-time algorithms described in the literature still lack robustness and are prone to drift and jitter. To address these problems, we have formulated the tracking problem in terms of local bundle adjustment and have developed a method for establishing image correspondences that can equally well handle short and wide-baseline matching. We then can merge the information from preceding frames with that provided by a very limited number of keyframes created during a training stage, which results in a real-time tracker that does not jitter or drift and can deal with significant aspect changes.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"